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How does the brain store and compute with cognitive information? In this research report, I revisit Kanerva’s Sparse Distributed Memory

theory and present a neurobiologically plausible implementation, founded on combinatorial connectivity patterns of large neural

assemblies. This type of neural network gives rise to a new efficient algorithm for content-addressable memory. Extending this new kind of

memory to store crossassociations (i.e. triples of items) leads to the discovery of the triadic memory algorithm, which turns out to be a

powerful building block for cognitive computing and possibly the long sought-for universal algorithm of human intelligence. As proof of

concept, I develop a semantic triplestore, analogy-finding operators, autoencoders for sparse hypervectors, and a basic temporal memory.

Software implementations are included in this report for reference. 

Sparse distributed memory 

Associative memory as a research subject has been spanning half a century and the fields of cognitive psychology,

neuroscience, artificial neural networks, and computer science. There is empirical evidence that the brain recalls memories by

searching through a network of data items which are connected by associations. An associative memory uses contextual input

cues, which can be incomplete or noisy, to retrieve and reconstruct previously stored information, often in a sequential or

recursive manner. 

A key feature of associative memory is the universality between the stored information and the storage addresses. In technical

applications, the concept of associative memory has found practical use in the form of content-addressable computer memory

systems. 

In his seminal work on Sparse Distributed Memory, Kanerva (1988) postulated that the brain represents cognitive concepts as

points in a hyperdimensional space. The dimensionality of this space would be in thousands. Long binary vectors (or bit

strings) serve as the fundamental data structure for storing and processing pieces of information in this mathematical

framework. 

At any moment, only a relatively small subset of the brain's neurons are active. This observation leads us to the working

assumption that binary vectors representing cognitive patterns are sparsely populated.  We also observe sparsity in the time

domain:  Compared  to  a  computer’s  clock,  the  brain  operates  at  low  speed.  Sparse  coding  is  the  basis  for  storage  and

processing  efficiency.  Computing  with  sparse  binary  hypervectors  has  mathematical  properties  that  are  well  suited  for

modeling cognitive processes. For example, superimposing two mental concepts would be analogous to the union (logical OR)

of two sparse hypervectors.  The Hamming distance between two such vectors serves as measure for the distance between the

corresponding concepts in our mind.

Associative memory systems are content-addressable: The same kind of data object (sparse binary hypervectors in the case of

SDM) is universally used as memory address as well as the pattern to be stored. For a heteroassociation x → y, a pattern y is

stored at a memory address x. For an autoassociation x → x, the same pattern x is used as address and as content.

Information storage is distributed across many locations, and each of those locations can hold pieces of multiple patterns.

Thus a distributed memory is robust to a partial loss of storage locations and transmission noise.

Like the human brain, an associative memory system can retrieve memories from incomplete or noisy input cues.  Starting

from a noisy input address,  a less noisy version of the stored pattern is recalled. Using this in turn as a memory address gives

an even cleaner pattern. This way, a sequence of recall steps will incrementally remove noise and converge to the originally

stored pattern.



Like the human brain, an associative memory system can retrieve memories from incomplete or noisy input cues.  Starting

from a noisy input address,  a less noisy version of the stored pattern is recalled. Using this in turn as a memory address gives

an even cleaner pattern. This way, a sequence of recall steps will incrementally remove noise and converge to the originally

stored pattern.

Storing a large number of patterns in a distributed manner requires a similarily large number of memory locations, arranged

in intermediate units between the input and the output layers. In neural network terminology this is a hidden layer.  In a

neurobiological realization, those hidden units should actually be quite visible, and likely consist of a very common neuron

type.

How does information from the input layer get distributed over hidden units? Kanerva hypothesized that there’s a large set of

fixed address vectors, randomly distributed over the space of possible input vectors, each pointing to a hard storage location.

In order to store or recall a pattern, SDM calculates the Hamming distance of the input address to those fixed address vectors

and selects some nearest neighbors as addresses for distributed storage. This mathematically elegant concept utilizes the

binomial statistical distribution of distances between random points in the space of sparse binary hypervectors. 

While the original SDM design exhibits the features one would desire from an associative memory, it has the shortcoming that

its addressing mechanism requires massive computation, which also has no immediate biological equivalent. Jaeckel (1989)

proposed a class of memory designs with an improved algorithmic complexity. 

In the following, I present a neural memory that realizes the desired features and properties of SDM using an efficient and

biologically plausible addressing mechanism.

 

Combinatorial neural networks

In order to construct a neural associative memory, we need to look beyond the cellular scale at which individual neurons

interact with each other. An individual neuron can perform only very basic computations. Complex properties of a memory

system will emerge at a large scale, in an assembly of possibly millions of neurons.

At the scale of a large neural networks, the information flow can be modelled, in a very good approximation, as binary

signals. In this sense, nature has found a way to emulate digital computation.

Our challenge is now to design a network structure which exhibits the features of an associative memory. How would we

connect millions of neurons in a systematic way to store a similarly large number of sparse binary hypervectors?

Specifically, we want to store associations x → y where x and y are sparse binary vectors of dimension n. It’s a well-understood

fact that a two-layer neural network with an n × n connection matrix has a very limited memory capacity. Information storage

needs to be distributed across a large intermediate layer. So our approach is to construct a three-layer neural network that

functions as a pattern associator.  

The solution is surprisingly simple: To track all possible correlations among the active bits of the input pattern, there needs to
be one hidden unit for every possible pairwise combination of input bits. With an input dimension n, the hidden layer then
consists of  n(n-1)/2 units, each permanently connected to a unique pair of inputs.  Each hidden node has a variable
connection to every output bit. Those variable connections are the  storage locations of the associative memory.

The following graph illustrates this network topology for n = 7, with the combinatorically connected input nodes shown at the

bottom, 21 hidden nodes at the center, and 7 fully connected output nodes at the top:   
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From this generic, fully connected network described above one can quickly derive variants by introducing some kind of

topology in the input or output layers. For example, with input bits arranged in a two-dimensional grid, only pairs of nodes

that lie within the radius of a receptive field would activate hidden nodes. Generally, such variants have a smaller hidden

layer and therefore a lower information capacity.

Is a combinatorial neural network design a plausible model for how the brain stores long-term information? Marr (1969) and

Albus (1971) independently developed the notion of the cerebellum as an associative memory, describing the connectivity and

interactions of the different neuron types observed in the cerebellar cortex. Kanerva (1992) pointed out the close analogies

between the Marr–Albus theory and SDM. 

Our three-layer combinatorial network resembles the structure of the cerebellar cortex in the following way: The input layer

models mossy fibers, which have pairwise forward connections to granule cells representing the intermediate layer. (In Marr’s

original model, granule cells are connected to up to five input fibers.) The output layer would be the equivalent of Purkinje

cells which receive input, through their huge number of synapses, from the intermediate layer.

In order to test the hypothesis of combinatorial connectivity, one would need to look for substructures in the cerebellum

where a number of input fibers connects to approximately the squared number of granule cells, and where excitation patterns

indicate pairwise connectivity. 

An efficient associative memory algorithm

Doing a multitude of experiments with different learning algorithms verfied that a combinatorial neural network naturally

behaves like an associative memory, regardless of the specific mechanism. Whether one uses physiologically-informed

synaptic activation models or discrete operations optimized for computer systems, a sparse distributed memory will emerge

from the network’s topology. With the goal in mind to provide efficient software components for cognitive computing, I’ll

present the most minimalistic learning algorithm that yields the desired memory features:

We begin with a blank slate memory where all storage locations are initialized to zero. To store a heteroassociation x → y in

memory, we determine the set of hidden nodes that get activated by pairs of active input nodes, i.e the non-zero bits in x.

Then we simply increment the connection weights between active hidden nodes and active output nodes (the non-zero bits in

y). Conversely, decrementing the same counters would delete a previously stored association from memory.

Recalling a stored pattern is equally straightforward: Given an input address x, we again find the set of activated hidden

nodes and calculate, for each possible output node, the sum of the respective counters. The resulting n-dimensional scoring

vector v indicates the probability for each output node to be part of the originally stored pattern.  

A binary output vector y with target sparse population p is reconstructed as follows: We find the pth largest component t in v

and construct the binary vector yi = [ vi ]p  so that yi = 1 if vi ≥ max(1,t), and yi = 0 otherwise. 

A complete reference implementation is included below. Mathematica (a language I helped develop) was used for discovering

and exploring this algorithm:

Triadic Memory (2022) | 3



HeteroAssociativeMemory[f_Symbol, {n_Integer, p_Integer}] := Module[ {T, connections},
(* memory initialization *)

T[_] = Table[0, {n}];

(* connections from input to hidden layer *)

connections[x_SparseArray] := Module[ {k = Sort[Flatten[x["NonzeroPositions"]]]},
Flatten[Table[ {k[[i]], k[[j]]}, {i, 1, Length[k] - 1}, {j, i + 1, Length[k]}], 1] ];

(* store x→y *)

f[x_SparseArray, y_SparseArray] :=
Module[{h = Normal[y]}, (T[#] += h) & /@ connections[x];];

(* recall y, given an address x *)

f[x_SparseArray] := Module[ {v, t },
t = Max[1, RankedMax[v = Plus @@ (T /@ connections[x]), p]];
SparseArray[Boole[# ≥ t] & /@ v] ];

(* random vector with dimension n and sparse population p *)

f[] := SparseArray[RandomSample[Range[n], p] → Table[1, {p}], {n}];
];

Several notes about this algorithm are in order:

The time complexity of storing or recalling patterns with dimension n and a sparse population p is On p2, so the performance

as a memory system is more efficient for sparser vectors.

There are no hidden parameters that may require tuning to particular tasks.

Each pattern is learnt in one shot –  no multiple training iterations are needed. Different associations can be added to memory

in any order, always yielding the same memory state. 

The core of the algorithm is built mainly upon vector additions. It neither requires the expensive matrix multiplications

typically found in neural-network-based learning methods, nor the kind of sequential search methods commonly used in

content-addressable memory systems. The computing performance of this algorithm is bound by the computer system’s

memory access speed rather than its arithmetic performance. 

Using the reference implementation configured with n = 1,000 and p = 10 (i.e. a sparsity of one percent)  running on a small

desktop computer, we can store or retrieve about 6,000 patterns per second. The memory capacity in this configuration is

about one million random associations. 

The memory’s noise tolerance depends on the number of stored patterns. When filled with 100,000 random patterns (at n =

1,000 and p = 10), all stored information can be perfectly retrieved even if half of the address bits are randomly removed, or up

to 15 address bits are randomly added. As progressively more patterns are stored in memory, noise tolerance decreases.

When exposed to a number of random autoassociations x → x, the algorithm quickly learns an identity mapping and becomes

useless. For building a practical auto-associative memory, we can work around this behavior by inserting random vectors w

and storing chains of the form  x → w → x. This setup exhibits the features we would expect from an auto-associative SDM, in

particular the ability to clean up noisy input. 

Summarizing what we’ve found so far: There is an unexpectedly simple and computationally highly efficient implementation

of SDM, based on a combinatorial neural network which shows similarities to structures observed in the cerebellar cortex. 

While an auto-associative or hetero-associative SDM is a useful tool for storing items or simple linked lists of items, it’s not

capable  of  computing  with  sparse  distributed  representations  on  its  own.  A  universal  computing  architecture  requires

algebraic  operations  between  sparse  distributed  representations,  in  particular  certain  equivalents  of  addition  and

multiplication.  This has been addressed with frameworks such as Vector Symbolic  Architectures (VSA, Gayler 2003) and

Hyperdimensional Computing (Kanerva 2009), which locate this functionality outside the memory system. In the following,

I’ll show that the complementary aspects of SDM on one side and VSA or Hyperdimensional Computing on the other side can

be subsumed and unified in a new kind of memory architecture.

4 | Peter Overmann



Triadic memory

Thus far,  we’ve learnt that there exists a biologically plausible neural  implementation of SDM, an associative distributed

memory  for  sparse  hypervectors,  which  is  based  on  a  novel  kind  of  combinatorial  neural  network.  The  corresponding

algorithm works efficiently as a content-addressable hetero-associative memory system. An auto-associative memory can be

built on this basis by inserting a layer of intermediate random vectors. Now, having solved this challenge which dates back to

the 1980s, it turns out there’s something even more interesting to be discovered: A memory that stores crossassociations, the

combination of two vectors producing a third vector, has an even simpler architecture than a hetero-associative memory.

Why investigate crossassociations? Associating a pair of items to result in a third item is an ubiquitous function in cognition,

neural  systems,  computer  science  and in  engineering applications  such as  sensor  data  fusion.  In  the  context  of  content-

addressable memory systems, a cross-associative memory would be a database that requires two keys to retrieve a value. To

my knowledge, no attempt has been made to design such a system.

In the context of hyperdimensional vectors, a crossassociation is a mapping x, y→ z from two input vectors to an output

vector. Within the framework of our combinatorially connected neural networks, there is a straightforward way to model such

a cross-associative memory: Every node in the hidden layer is activated by a different pairing of nodes chosen from the two

input vectors. This connectivity pattern is illustrated here for n = 4:

The hidden layer consists of n2  nodes, so there are n3  storage locations connecting the hidden layer with the output layer.

Visualizing those storage elements as a cube, we see that a sparse vector corresponds to a set of p parallel planes in this cube (p

being the sparse population, or vector norm). 
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For a given triple of input and output vectors, each with population p and each representing one of the three axes of the cube, 

there will be p3 activated storage locations, corresponding to the elements where three orthogonal planes intersect.

We started with the idea of storing an association x, y→ z that connects two input vectors to one output vector. But obviously

the shape of this memory cube does not distinguish between input and output. Any two of the three primary axes can be used

for input, with the third axis taking the role of output. To account for this observation, we’ll use the triplet notation {x,y,z} for

an association between three vectors.

The learning algorithm can be expressed in mathematical notation as follows: The memory cube is a tensor of rank 3 with

(high) dimensions n ⨯ n ⨯ n, consisting of non-negative integers Tijk  with zero initial value. Adding a triple {x, y, z} of binary

sparse vectors to the memory corresponds, in component notation, to the mapping Tijk → Tijk + xi yj zk. Deletion from memory

is realized with the inverse operation Tijk  → Tijk - xi yj zk. 

To recall z for given vectors x and y, we just need to calculate zk = xi yj Tijkp . Similarily, the first and second parts of a triplet

are given by xi = yj zk Tijkp  and yj = xi zk Tijkp . This notation implies summation over indices that appear twice in the same

term. The operator […]p , as defined in the previous section, produces a binary vector with target sparse population p.

To understand why and how this works, let’s consider a tensor Tijk  which is a superposition of various triples, but does not

contain the term xi  yj  zk. Adding this triple updates the this tensor to Tijk  + xi  yj  zk.  The query for zk  is then calculated as

xi yj Tijk +xi yj zk p  = xi yj Tijk +xi yj xi yj zkp = xi yj Tijk +p2 zkp  ≈  p2 zkp = zk.  This is true as long as the average value of the

counters Tijk  stays below 1. From this we can quickly estimate the memory’s capacity: The probability for one component Tijk

to be incremented when adding a random triple association is pn3. Therefore the memory can hold and perfectly recall up

to np3  random triples. At a typical sparsity of one percent, the capacity is one million associations — independently of the

vector dimension.

The chart below shows the distribution of memory counters Tijk  for n = 1,000 and p = 10, after adding one million random

associations.  Circa 36.78 percent (or 1/e) of the counters remains unused, about the same number of counters has value 1, and

the rest shows an exponentially decreasing distribution up to a value of 11. This means in an ideal implementation a 4-bit

memory counter would suffice, and the entire memory would occupy half a gigabyte of computer storage.

If we consider each triple vector stored in memory a hyperedge connecting two nodes to a third node, then the entire memory

becomes a holistic superposition of directed hypergraphs. Traversing the network by means of the query function defined

above is therefore a probabilistic operation, as the outcome of a query is the most likely superposition of nodes that were

originally added to the memory. The sparsity constraint effectively cuts off less probable contributions.  The combination of a

graph structure with probabilistic decision making evidently resembles the concept of a Bayesian network.

What we’re discovering here is  arguably the simplest  possible realization of  an SDM, or content-addressable memory in

general. The unexpected simplicity of this algorithm emerges as we moved from autoassociations and heteroassociations to 

crossassociations that involve triples of sparse distributed representations. 
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What we’re discovering here is  arguably the simplest  possible realization of  an SDM, or content-addressable memory in

general. The unexpected simplicity of this algorithm emerges as we moved from autoassociations and heteroassociations to 

crossassociations that involve triples of sparse distributed representations. 

In the following, I’ll refer to this algorithm as triadic memory — borrowing this term from Feldman (1981) who used it in a

different context.

A reference implementation in Mathematica  language is  shown below. There are separate functions for recalling the first,

second, or third part in a triple association, or triad.

TriadicMemory[f_Symbol, {n_Integer, p_Integer} ] := Module[ {T, tup},
(* initialize memory cube *)

T = Table[ 0, {n}, {n}, {n}];

(* memory addresses activated by input vectors *)

tup[x__] := Tuples[ Flatten[ #["NonzeroPositions"] ] & /@ {x}];

(* binarize a vector at sparsity target p *)

f[0] = SparseArray[{0}, {n}];
f[x_] := Module[{t = RankedMax[x, p]}, SparseArray[Boole[# ≥ t] & /@ x]];

(* store {x,y,z} *)

f[x_SparseArray, y_SparseArray, z_SparseArray] := (++ T[[##]] & @@@ tup[x, y, z];);

(* recall x, y, or z *)

f[_ , y_, z_] := f[ Plus @@ ( T[[All, #1, #2]] & @@@ tup[y, z])];
f[x_, _ , z_] := f[ Plus @@ ( T[[#1, All, #2]] & @@@ tup[x, z])];
f[x_, y_, _] := f[ Plus @@ ( T[[#1, #2, All]] & @@@ tup[x, y])];

(* random vector with dimension n and sparse population p *)

f[] := SparseArray[ RandomSample[ Range[n], p] → Table[1, {p}], {n}];
]

The above program instantiates a named triadic memory and its access functions. For practical tasks, several such memories

may be instantiated and combined into circuits (an example will be given later on). A triadic memory M provides the atomic

operation M[x,y,z] for storing a triplet {x, y, z}, and the three functions M[_,y,z], M[x,_,z], and M[x,y,_] for recalling one

part (denoted here by the blank character) by specifying the other two parts of the triplet. As already mentioned, we can also

implement a function that subtracts a triple from memory.

A triadic  memory’s  capacity  is  comparable  to  the  capacity  of  a  hetero-associative  memory with  the  same configuration.

Chosing a vector dimension n = 1,000 and sparse population p = 10, we can store about a million triples of random vectors and

perfectly recall them, even in the presence of a few bits of noise in the input.

In the terminology of Vector Symbolic Architectures, storing a triple {x, y, z} binds a value to a variable and assigns the result

to a third vector. Which of the three positions we take to be the variable, the value or the result is up to interpretation — any of

the six possible permutations can be chosen.

The binding operation is reversible: After binding y to x and linking the result to z, we can extract y by recalling the second

position {x, _, z}. Also, binding distributes over vector addition: Individually storing {x, y, a} and {x, y, b} in memory has the

same effect as storing {x, y, a+b}, with the sum (or bundle in VSA terminology) of two binary vectors being computed as the

elementwise logical  OR.  With those two properties,  reversibility  and distribution over  addition,  the binding operation is

effectively a kind of multiplication. 

As the triadic memory incorporates bundling and variable binding as intrinsic features, we can now build a foundation for

hyperdimensional computing based solely on the memory system — without the need for an external binding operation. In

other words, triadic memory merges the concepts of SDM and VSA into a single unified framework. 
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Semantic triples and analogy

The Resource Description Framework (RDF),  a  W3C specification for  storing and exchanging semantic  data on the web,

represents semantic facts as triples of the form {subject, predicate, object} — a data structure that fits naturally into the triadic

memory framework. Implementing an efficient and scalable RDF triplestore has been a well-known challenge. With triadic

memory, we’ve now a content-addressable triplestore at our hands that scales to millions of items, with a constant query time

independent of the number of items. In this section, we’ll explore how semantic triples can be mapped into a triadic memory. 

As a proof of concept, we set up a small movie database involving titles, years, director names and countries:

{TG, title, The General} {MT, title, Modern Times}
{TG, year, 1926} {MT, year, 1936}
{TG, director, Keaton} {MT, director, Chaplin}
{TG, country, USA} {MT, country, USA}

Each data item (subjects, predicates and objects) shall be mapped to a random hyperdimensional vector, which are mutually

nearly orthogonal and don’t encode any semantic content or similarity. Instead, similarity between items will emerge from

their proximity in the semantic graph. The three parts of a triplet are a priori first-class objects: It’s an arbitrary choice to assign

the first position to represent objects, the second position to represent predicates, and the third to represent objects —we’re

adopting the RDF convention just for sake of clarity.

Having encoded all data items as random vectors, we can now store them directly in a triadic memory. Because the

underlying operation is an addition, it does not matter in which order triples are committed to the memory. As already

mentioned, also subtraction is possible atomic operation. 

To query the triadic memory, two parts of a triplet need to be given to retrieve the third part. For instance, querying {MT, _,

1936} gives year. This works even if the input vectors are noisy or superpositions of the originally encoded items. The result

of a query may be an approximate version of the precise answer due to crosstalk from unrelated associations, or naturally if

the input was unprecise. Chaining a few queries together, using the output of one query as the input to the next, typically

improves accuracy step by step, resulting in a clean answer. This is a general and well-understood feature of associative

memory systems.

An important feature of triadic memory, which distiguishes it from auto-associative or hetero-associative memories, is the

ability to test if an association has been already stored. This property essentially enables unsupervised learning, as we can

now build a memory system that learns an item only in the case it has not been seen before. For example, one might want to

test if {x,y,_} is identical to z before deciding to store the triple {x,y,z} in memory. 

Triadic memory stores a holistic superposition of triples, unlike a traditional database which keeps items as separate records.

In the above example, the query {_, country, USA} retrieves a sparse hyperdimensional vector that is a superposition of TG

and MT. This bundle can then be used in a subsequent operation to query further information, simultaneously on both items it

contains. Conversely, a traditional database would return a table of the two entities TG and MT, over which a subsequent query

would then need to iterate. What’s an expensive join operation in a conventional triplestore is done in one go in triadic

memory.

At this point, we’ve seen some first evidence that triadic memory stores and processes information in a way that resembles

how the mind works. To take this analogy a step further, let’s explore how one might construct analogies between semantic

facts stored in the memory. Arguably, the ability to think in analogies is at the foundation of cognition. Our mind constantly

seeks  to  find connections  and relations  between pieces  of  information.  In  the  framework of  triadic  memory,  this  would

correspond to a mechanism that finds a connecting path, or mapping,  between structures in the semantic graph.  

Circling back to our movie database, let’s explore how to construct basic analogy queries (see Kanerva (2010) for a similar

discussion in  the  context  of  VSA).  For  instance,  we could ask what’s  the  analogy to  Keaton  in  MT  — without  providing

additional cues that finding the answer involves relations with MT or the director predicate. In order to traverse the semantic

graph, we need to know at least what predicates are known about each subject. A simple way to represent such an index (or

rudimentary schema) might look like this:

{TG, predicate, title} {MT, predicate, title}
{TG, predicate, year} {MT, predicate, year}
{TG, predicate, director} {MT, predicate, director}
{TG, predicate, country} {MT, predicate, country}

8 | Peter Overmann



{TG, predicate, title} {MT, predicate, title}
{TG, predicate, year} {MT, predicate, year}
{TG, predicate, director} {MT, predicate, director}
{TG, predicate, country} {MT, predicate, country}

We also record what predicates are known for each object:

{title, predicate, The General} {title, predicate, Modern Times}
{year, predicate, 1926} {year, predicate, 1936}
{director, predicate, Keaton} {director, predicate, Chaplin}
{country, predicate, USA}

The above index can be stored either in the same triadic memory or in a separate memory instance (a hetero-associative

memory would equally work for this purpose). Our notation does not distinguish between those possibilities.

It’s  now straightforward to infer the equivalent of  Keaton  in MT:  The two-step query {MT,{_,predicate,Keaton},_} finds

Chaplin, which is the expected answer. Generally, the function {sub, {_, predicate, obj}, _} constructs a direct analogy

between sub and  obj. 

A slightly more complicated query pattern connects the movie title Modern Times with Keaton: 

{{_,{_,predicate,Modern Times},Modern Times,{_,predicate,Keaton},_} resolves to Chaplin. This is a query pattern that

connects two objects to produce a third object.

As  a  last  example,  let’s  take  two  objects,  1936  and  USA,  and  search  a  subject  they  have  in  common:

{_,{{_,{_,predicate,USA},USA},_,1936},1936} finds MT to be the connecting node.

Autoencoders and unsupervised learning

Many types of  autoencoders have been devised for  unsupervised learning tasks.  An autoencoder converts  an input to a

compressed code (a “bottleneck”), then decodes this intermediate representation in order to reconstruct a version of the input

which retains only its essential features while reducing noise. Typical autoencoder algorithms require training, achieved by

backpropagating reconstruction errors. 

How would we build an autoencoder for high-dimensional sparse distributed representations? As a starting point, we take a

pair  {a1, a2} of sparse hypervectors, each with dimension n and sparse population p, which should be around one percent of n.

The pair {a1, a2} can be considered a vector of dimension 2n, consisting of two segments of equal length and sparsity, resulting

in a total sparse population 2p. A 2-to-1 autoencoder would map {a1, a2} to an intermediate code c, then uses c to reconstruct

{a1, a2}. This can easily be achieved with triadic memory:

The first step is to query c = {a1, a2, _} , then we calculate the reverse mappings b1 = {_,a2,c} and b2 = {a1,_,c}. If the combination

{b1, b2}  is  similar  to {a1, a2},  we know this  or  a  similar  triad is  already stored in memory,  and we take {b1, b2}  to be the

reconstructed result. Owing to the roundtrip query via the internal code, the pair {b1, b2} will be a “cleaner” version of {a1, a2}.

If {b1, b2} is dissimilar to {a1, a2}, we generate a random vector c, store the new triple {a1, a2, c} in memory, and consider the

input  as result. Similarity is measured by the combined Hamming distance H(a1,b1) + H(a2,b2). Here we use the fact that two

sparse vectors whose Hamming distance is less than p/2 can be considered statistically related. 

In essence, this algorithm tests if the memory knows an association between a pair of vectors. If an association is found, it

calculates a version of the input which is consistent with what is known in memory. Otherwise, a new association with a

newly deployed random vector is added to the memory.

The corresponding Mathematica program consists of just a few lines, to be inserted in the above TriadicMemory code. Of the

three possible permutations, here is the function that autoencodes the first two positions of a triple:
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(* autoencoder for {a1,a2} *)

f[ a1_SparseArray, a2_SparseArray, Automatic ] := Module[ {b1, b2, c},

z = f[a1, a2, _]; b1 = f[_, a2, c]; b2 = f[a1, _, c];

If [ HammingDistance[ a1, b1] + HammingDistance[a2, b2] > p ,

f[a1, a2, c = f[] (* new random vector *) ]; {a1, a2, c}, {b1, b2, c}]];

The information flow inside this 2-to-1 autoencoder is sketched below:

Although this algorithm serves the same purpose as traditional autoencoders, there are some noteworthy differences: First, it

does not require offline training before deployment. This program continually learns new information in each step while

recognizing patterns it has already enountered in a similar shape, and produces output that is close, or even identical, to

previously learnt information. 

Another difference is the encoding method: When there’s new information to be learnt, a new random vector gets generated

and assigned to represent it in the memory. This encoding strategy does not depend on the type or meaning of data to be

encoded. 

Apart from the vector dimension n and the target sparse population p, there are no parameters that may require tuning. 

This internal code c is effectively a higher-level condensed representation of the input pair {a1, a2}, thus creating hierarchy. By

layering multiple autoencoders, each realized as a separate instance of a triadic memory, we can now easily build up deep

hierarchies with increasingly abstract, and increasingly stable, representations of low-level input.

The most radical difference with respect to traditional autocoders is the absence of a Hebbian-style learning mechanism. As

descendants of the classic perceptron, today’s family of autoencoders is fundamentally based on synaptic learning, that is

fitting real-valued network connection weights to achieve a desired outcome. Undoubtedly, such networks have evolved into

impressive applications of linear algebra techniques. But it’s hard to see how a biological neuron would acquire and persist

high-precision  synaptic  weights,  adjust  its  learning  rate  to  a  specific  task,  or  even  implement  something  like  the

backpropagation of errors. 

In a triadic memory, the equivalents of synapses are binary. Learning is based on the deployment of a preexisting random

vectors (as we’ve seen in the autoencoder algorithm), and on counting the number of association patterns in which those

random vectors are involved. In this model, learning and memory are separated: Binary synapses of random seed vectors are

the locus of memory, wiring and firing together as postulated by Hebb. But the locus of learning is linked to the random

vector as a whole, not to the strengths of individual vector elements. My hypothesis is that dendritic segments of pyramidal

cells are the neural equivalents of the random seed vectors in triadic memory, and that a dendrite somehow keeps track of the

number of associations to which it contributes (Gallistel and King (2009) advocated a theory compatible with this view).  

To conclude the discussion of autoencoders, we assemble a 3-to-1 autoencoder which compresses three vectors {a1, a2, a3} to

an internal  code (reducing dimensionality by a factor 3)  and gives a reconstructed version of  the input.  This is  our first

example for  a  multi-level  circuit  based on triadic  memory components.  The building block to be used here is  the 2-to-1

autoencoder introduced above, for which we’ll use this circuit diagram symbol:
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In a feed-forward circuit  diagram, each connecting arrow carries  an entire n-dimensional  sparse hypervector.  With these

prerequisites, we can design a 3-to-1 autoencoder as follows:

The three modules used in this circuit must be based on one and the same triadic memory instance in order to properly

construct the output. If we’re only interested in an encoding of the input, those three modules can be realized as independent

memories. A 3-to-1 autoencoder module may be used, for example, to encode three consecutive letters in a word or three

consecutive words in a sentence. For such purposes, we would introduce a new circuit diagram symbol which encapsulates

the above diagram:

The design of the  3-to-1 autoencoder gives us a first glimpse of what it takes to do cognitive modelling and computing on the

foundation of triadic memory. Starting from atomic memory operations, we can create modular building blocks, recursively

combine  them  into  higher-level  modules,  and  thus  achieve  deep  neural  network  architectures  for  hyperdimensional

computing. 

Sequence learning and temporal memory

How would an associative memory learn and replay sequences of hyperdimensional vectors? This is a key question, as the

brain has a inherent capability to learn temporal, spatial and all kinds of abstract sequences. A computational model of the

brain needs to be able to ingest sequential data patterns, incrementally update its memory as novel information becomes

available,  and make the most probable prediction for future input at  each step. Technical  applications of online machine

learning include time series prediction, sequence continuation, and anomaly detection. 

To represent a sequence, a memory system needs to associate each element with a condensed version of the preceding

elements. Such a system incorporates a feedback loop that accumulates the context which is needed to predict the next step. A

concrete implementation based on triadic memory is a recurrent neural network with two stages:
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Let’s turn our attention to the first stage: A 2-to-1 autoencoder combines the current input with the superposition of the

previous input and a feedback signal which is the internal code from the previous time step. The superposition is calculated as

the element-wise logical OR of the two vectors. So one of the inputs to the autoencoder has twice the regular sparse

population, which essentially represents deep context (the depth being determined by the sparse population p). The output of

the autoencoder, which is a stabilized version of its input, serves as the input for the second stage. The second stage then

learns and predicts the outcome based on the context provided by the first stage.

The above diagram makes use of a new circuit component    which is a basic triadic memory module with twofold

functionality:  Given a triple {x,y,z}, it adds the triple to the memory if the result of the query {x,y,_} is not identical to z.  When

given an input pair {x,y}, the output is the result of the query {x,y,_}. Like the autoencoder introduced earlier, this is a core

component to be used in unsupervised learning scenarios. In the temporal memory network shown above it is invoked twice

in each time step: First to associate the current input with the output from the first stage, second to make a prediction based on

the updated output from the first stage. The two stages must be based on separate triadic memory instances.

Our associative temporal memory processes one long sequence of sparse hypervectors, learning new input vectors and

subsequences on the go. When it recognizes a subsequence and makes the correct prediction, it won’t update the memory. In

cases where context is ambiguous, the prediction can be a superposition of possible outcomes — which is the behavior we

should expect from an associative sequence memory. 

Computational experiments with this temporal memory show an interesting, almost human-like behavior. It easily learns

repetitions of simple patterns such as ABCD, or of more complex patterns like ABCDAB. When switching to repetitions of a new

pattern, say XXYZ,  it will predict some continuation of the previous pattern for a few steps and then adjust to the new pattern.

Long sequences of many distinct items, such as words, are easier to remember than long sequences of few items, such as the

decimal digits. To give an example for a difficult sequence: Trying to memorize the first hundred digits of π, after about five

iterations the temporal memory accurately predicts most digits. 

Hawkins (2004) outlined a hierarchical temporal memory model whose core function is a memory prediction mechanism,

located in columnar units of the cerebral cortex. Our temporal memory achieves a similar if not identical functionality, and it

may turn out that it is a computationally equivalent — yet considerably simpler — version of Hawkins’ framework. Following

this path, the consequence would be that a full-scale model of the neocortex can be built from some hundred thousands of

triadic memory instances forming a deep hierarchical  recurrent network. As the necessary software components are now

readily available, the next challenge is to come up with scalable design patterns for building larger cognitive circuits.

Conclusions

The research journey reported in this paper began with revisiting the idea of Sparse Distributed Memory (SDM) and the

discovery of a computationally efficient algorithm based on a new kind of combinatorial neural network. This new algorithm

realizes a content-addressable memory system for hyperdimensional sparse binary vectors, and may serve as a computational

model for aspects of the cerebellar cortex. 

Further exploration of this hetero-associative neural memory revealed the existence of a related memory network that stores

crossassociations, i.e. relations between triples of items. Somewhat unexpectedly, this triadic memory has a more coherent

mathematical  formulation than its hetero-associative counterpart,  and it  offers rich features not found in traditional

associative memories:
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— Triadic memory stores a holistic superposition of triples of hyperdimensional sparse binary vectors.

— It has the features of an associative content-addressable memory, in particular tolerance to noise.

— It emulates elements of Bayesian networks. 

— Triadic memory is based on a new kind of artificial neural network.

— Its learning mechanism resembles dendritic rather than Hebbian synaptic learning.

— It’s the simplest possible realization of an SDM.

— It incorporates  properties of Vector Symbolic Architecture (VSA).

— The memory lends itself to storing and computing with semantic triples.

— One part of a triple can be recalled by specifying the other two parts, in any direction.

— It can be tested whether an association is already stored in memory, which enables unsupervised learning.

— The vector dimension n and sparse population p are the only configuration parameters.

— The memory’s capacity is approximately np3.

— The underlying cubic memory shape is an n ⨯ n ⨯ n array of small non-negative integers.

— A large class of possible algorithms can be built upon basic triadic memory motifs.

To demonstrate the power of the triadic memory algorithm, I’ve shown how to build a semantic triplestore, basic analogy

operators, autoencoders and a temporal memory based on this new framework. It cannot be emphasized enough that all of the

above has been implemented with just a few lines of program code, proving that triadic memory is a feasible foundation for

cognitive computing. From this starting point, we can now model increasingly complex cognitive processes, develop machine

learning solutions that emulate human cognition, and ultimately aim at building a model of the brain.

If we follow Mountcastle’s (1978) idea that all human intelligence is based on just one universal algorithm, then triadic

memory should be considered a promising candidate.
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